HIDE probes consist of an organelle-specific lipid or lipid-like small molecule with n = 2). e STED imaging of endoplasmic reticulum of HeLa cells labeled with 2 and confocal image as a function of position along the line profile in e. a pool of non-absorbing (dark) Yale595 molecules that can replenish Describe the structure and function of the nucleus; Explain the organization of DNA This diagram shows an animal cell with all the intracellular organelles labeled. Without nuclei, the life span of RBCs is short, and so the body must produce new There also can be a dark-staining mass often visible under a simple light Melanosomes are tissue-specific lysosome-related organelles of pigment cells in which the small GTPase RAB27a and the linker protein melanophilin (also known as SLAC2a The importance of the fibrils in pigment-cell function is supported by (TYRP1) is trapped in endosomes in BLOC-1 mutants (panels d and e).
The Nucleus And Cytoplasm | Anatomy And Physiology
Part E represents small dots on the nucleolus. What is the function of the small, dark organelles labeled E? They contain enzymes for the . Consider this animal cell. The organelles in an animal cell are labeled. Part E represents small dots on the nucleolus. What is the function of the small, - 17146557Consider this animal cell. What is the function of the small, dark organelles labeled E? not a maybe c. Which organelle is used as temporary storage for water, what is the function of the small, dark organelles labeled E? They assemble amino acids into proteins. What does it mean for a membrane to be selectively
Melanosomes — Dark Organelles Enlighten Endosomal Membrane
All animals and most microorganisms rely on the continual uptake of large amounts of small organelles in the immature cells of plant meristems (Figure 14-33A). In the carbon-fixation reactions (also called the "dark reactions"), the ATP and the At the top left is an orientating diagram showing the molecules that (more.We also fluorescently labeled other organelles, such as the Golgi In addition to these conventional organelles, we also observed dark We observed mostly short-term interactions between the mitochondria and LDs in resting cells. by the Gaussian function are shown on the right. e A representative The funders had no role in study design, data collection and analysis, decision Identification of cellular organelles at high resolution using HTM on HeLa cells has a surprising effect: LDs become smaller but more numerous 70% (at 545 nm), dark noise (typical) 6.6 e-, dynamic range (typical) 73.7 dB, . A combination of holo-tomographic microscopy and computer vision allows the label-free observation of novel shape and dry mass dynamics of mammalian organelles such as lipid droplets and the investigation of complex organellar motion using pattern matching and homography analysis. Image-based analysis of living mammalian cells using label-free 3D refractive index maps reveals new organelle dynamics and dry mass fluxThe organelles in an animal cell are labeled. Part E represents small dots on the nucleolus. What is the function of the small, dark organelles labeled - the
1
Gruenberg, J. The endocytic pathway: a mosaic of domains. Nature Rev. Mol. Cell Biol. 2, 721–730 (2001).
CAS Google Scholar
2Maxfield, F. R. & McGraw, T. E. Endocytic recycling. Nature Rev. Mol. Cell Biol. 5, 121–132 (2004).
CAS Google Scholar
3Spritz, R. A., Chiang, P. W., Oiso, N. & Alkhateeb, A. Human and mouse issues of pigmentation. Curr. Opin. Genet. Dev. 13, 284–289 (2003).
CAS PubMed Google Scholar
4Jeffery, G. Architecture of the optic chiasm and the mechanisms that sculpt its building. Physiol. Rev. 81, 1393–1414 (2001).
CAS PubMed Google Scholar
5Wakamatsu, K. & Ito, S. Advanced chemical strategies in melanin resolution. Pigment Cell Res. 15, 162–173 (2002).
Google Scholar
6Marks, M. S. & Seabra, M. C. The melanosome: membrane dynamics in black and white. Nature Rev. Mol. Cell Biol. 2, 738–748 (2001).
CAS Google Scholar
7Hearing, V. J. Biogenesis of pigment granules: a sensitive way to keep an eye on melanocyte function. J. Dermatol. Sci. 37, 3–14 (2005).
CAS PubMed Google Scholar
8Furumura, M. et al. Characterization of genes modulated all the way through pheomelanogenesis the use of differential display. Proc. Natl Acad. Sci. USA 95, 7374–7378 (1998).
CAS PubMed Google Scholar
9Futter, C. E. The molecular legislation of organelle delivery in mammalian retinal pigment epithelial cells. Pigment Cell Res. 19, 104–111 (2006).
CAS PubMed Google Scholar
10Van Den Bossche, Ok., Naeyaert, J.-M. & Lambert, J. The quest for the mechanism of melanin switch. Traffic 7, 769–778 (2006).
CAS PubMed Google Scholar
11Seabra, M. C. & Coudrier, E. Rab GTPases and myosin motors in organelle motility. Traffic 5, 393–399 (2004).
CAS PubMed Google Scholar
12Bennett, D. C. & Lamoreux, M. L. The colour loci of mice — a genetic century. Pigment Cell Res. 16, 333–344 (2003).
CAS PubMed PubMed Central Google Scholar
13Raposo, G., Tenza, D., Murphy, D. M., Berson, J. F. & Marks, M. S. Distinct protein sorting and localization to premelanosomes, melanosomes, and lysosomes in pigmented melanocytic cells. J. Cell Biol. 152, 809–823 (2001). Showed that melanosomes are segregated from the endocytic pathway and are distinct from lysosomes, with a common precursor at the level I melanosome/ vacuolar early endosome.
CAS PubMed PubMed Central Google Scholar
14Kushimoto, T. et al. A style for melanosome biogenesis in response to the purification and research of early melanosomes. Proc. Natl Acad. Sci. USA 98, 10698–10703 (2001).
CAS PubMed Google Scholar
15Theos, A. C. et al. Functions of AP-3 and AP-1 in tyrosinase sorting from endosomes to melanosomes. Mol. Biol. Cell 16, 5356–5372 (2005).
CAS PubMed PubMed Central Google Scholar
16Orlow, S. J. Melanosomes are specialized participants of the lysosomal lineage of organelles. J. Invest. Dermatol. 105, 3–7 (1995).
CAS PubMed Google Scholar
17Chi, A. et al. Proteomic and bioinformatic characterization of the biogenesis and function of melanosomes. J. Proteome Res. 5, 3135–3144 (2006).
CAS PubMed Google Scholar
18Blott, E. J. & Griffiths, G. M. Secretory lysosomes. Nature Rev. Mol. Cell Biol. 3, 122–131 (2002).
CAS Google Scholar
19Raposo, G., Marks, M. S. & Cutler, D. F. Lysosome-related organelles: riding post-Golgi compartments into specialisation. Curr. Opin. Cell Biol. 19, 394–401 (2007).
CAS PubMed PubMed Central Google Scholar
20Bouchard, B., Fuller, B. B., Vijayasaradhi, S. & Houghton, A. N. Induction of pigmentation in mouse fibroblasts through expression of human tyrosinase cDNA. J. Exp. Med. 169, 2029–2042 (1989).
CAS PubMed Google Scholar
21Vijayasaradhi, S., Xu, Y. Q., Bouchard, B. & Houghton, A. N. Intracellular sorting and focused on of melanosomal membrane proteins: identity of alerts for sorting of the human brown locus protein, gp75. J. Cell Biol. 130, 807–820 (1995). Provided proof for common indicators for intracellular sorting of melanosomal and lysosomal proteins, and supported the perception that lysosomes and melanosomes percentage a common endosomal pathway of biogenesis. A linked sorting sign in tyrosinase used to be later identified in references 58 – 60.
CAS PubMed Google Scholar
22Berson, J. F., Harper, D., Tenza, D., Raposo, G. & Marks, M. S. Pmel17 initiates premelanosome morphogenesis inside of multivesicular bodies. Mol. Biol. Cell 12, 3451–3464 (2001).
CAS PubMed PubMed Central Google Scholar
23Wei, M. L. Hermansky–Pudlak syndrome: a disease of protein trafficking and organelle function. Pigment Cell Res. 19, 19–42 (2006).
CAS PubMed Google Scholar
24Theos, A. C., Truschel, S. T., Raposo, G. & Marks, M. S. The silver locus product Pmel17/ gp100/ Silv/ ME20: controversial in title and in function. Pigment Cell Res. 18, 322–336 (2005).
CAS PubMed PubMed Central Google Scholar
25Fowler, D. M. et al. Functional amyloid formation inside of mammalian tissue. PLoS Biol. 4, e6 (2006). Showed that PMEL17 cleavage products in vitro form fibrils with hallmarks of amyloid, and implicated amyloid construction in melanin polymerization.
Google Scholar
26Hoashi, T. et al. MART-1 is required for the function of the melanosomal matrix protein PMEL17/GP100 and the maturation of melanosomes. J. Biol. Chem. 280, 14006–14016 (2005).
CAS PubMed Google Scholar
27Theos, A. C. et al. Dual loss of ER export and endocytic alerts with altered melanosome morphology in the silver mutation of Pmel17. Mol. Biol. Cell 17, 3598–3612 (2006).
CAS PubMed PubMed Central Google Scholar
28Quevedo, W. C., Fleischmann, R. D. & Dyckman, J. in Phenotypic Expression in Pigment Cells (ed. Seiji, M.) 177–184 (Tokyo Univ. Press, Tokyo, 1981).
Google Scholar
29Hamilton, H. A study of the physiological properties of melanophores with particular connection with their position in feather coloration. Anat. Rec. 78, 525–548 (1940).
Google Scholar
30Schonthaler, H. B. et al. A mutation in the silver gene results in defects in melanosome biogenesis and alterations in the visual device in the zebrafish mutant fading vision. Dev. Biol. 284, 421–436 (2005).
CAS PubMed Google Scholar
31Clark, L. A., Wahl, J. M., Rees, C. A. & Murphy, Okay. E. Retrotransposon insertion in SILV is chargeable for merle patterning of the domestic canine. Proc. Natl Acad. Sci. USA 103, 1376–1381 (2006).
CAS PubMed Google Scholar
32Brunberg, E. et al. A missense mutation in PMEL17 is related to the Silver coat color in the horse. BMC Genet. 7, 46 (2006).
PubMed PubMed Central Google Scholar
33Berson, J. F. et al. Proprotein convertase cleavage liberates a fibrillogenic fragment of a resident glycoprotein to initiate melanosome biogenesis. J. Cell Biol. 161, 521–533 (2003). This paper, at the side of reference 22 , showed that PMEL17 is the main component of the intralumenal fibrils of degree II melanosomes and that the fibrils are generated by means of cleavage of PMEL17 in a post-Golgi compartment. These papers also highlight the function of MVBs as intermediates in the technology of level II melanosomes.
CAS PubMed PubMed Central Google Scholar
34Theos, A. C. et al. A lumenal domain-dependent pathway for sorting to intralumenal vesicles of multivesicular endosomes all for organelle morphogenesis. Dev. Cell 10, 343–354 (2006). The first find out about to define a lumenal sorting determinant for MVB sorting, the use of PMEL17 as a type. Together with regard 39 , it confirmed that this sorting and a separate lumenal determinant are required for formation of premelanosome fibrils.
CAS PubMed PubMed Central Google Scholar
35Journet, A. M., Saffaripour, S., Cramer, E. M., Tenza, D. & Wagner, D. D. Von Willebrand issue garage requires intact prosequence cleavage website. Eur. J. Cell Biol. 60, 31–41 (1993).
CAS PubMed Google Scholar
36Kelly, J. W. & Balch, W. E. Amyloid as a natural product. J. Cell Biol. 161, 461–462 (2003).
CAS PubMed PubMed Central Google Scholar
37Kessler, J. C., Rochet, J. C. & Lansbury, P. T. J. The N-terminal repeat area of α-synuclein inhibits β-sheet and amyloid fibril formation. Biochemistry 42, 672–678 (2003).
CAS PubMed Google Scholar
38Parham, S. N., Resende, C. G. & Tuite, M. F. Oligopeptide repeats in the yeast protein Sup35p stabilize intermolecular prion interactions. EMBO J. 20, 2111–2119 (2001).
CAS PubMed PubMed Central Google Scholar
39Hoashi, T. et al. The repeat area of the melanosomal matrix protein Pmel17/gp100 is required for the formation of organellar fibers. J. Biol. Chem. 281, 21198–22208 (2006).
CAS PubMed Google Scholar
40Vischer, U. M. & Wagner, D. D. Von Willebrand issue proteolytic processing and multimerization precede the formation of Weibel–Palade bodies. Blood 83, 3536–3544 (1994).
CAS PubMed Google Scholar
41Basrur, V. et al. Proteomic analysis of early melanosomes: identification of novel melanosomal proteins. J. Proteome Res. 2, 69–79 (2003).
CAS PubMed Google Scholar
42Valencia, J. C. et al. Sorting of Pmel17 to melanosomes thru the plasma membrane by AP1 and AP2: evidence for the polarized nature of melanocytes. J. Cell Sci. 119, 1080–1091 (2006).
CAS PubMed PubMed Central Google Scholar
43Doray, B., Lee, I., Knisely, J., Bu, G. & Kornfeld, S. The γ/σ1 and α/σ2 hemicomplexes of clathrin adaptors AP-1 and AP-2 harbor the dileucine reputation website online. Mol. Biol. Cell 18, 1887–1896 (2007).
CAS PubMed PubMed Central Google Scholar
44Valencia, J. C. et al. Sialylated core 1 O-glycans affect the sorting of Pmel17/gp100 and determine its capacity to shape fibrils. J. Biol. Chem. 282, 11266–11280 (2007).
CAS PubMed Google Scholar
45Katzmann, D. J., Odorizzi, G. & Emr, S. D. Receptor downregulation and multivesicular-body sorting. Nature Rev. Mol. Cell Biol. 3, 893–905 (2002).
CAS Google Scholar
46Lévy, F. et al. Ubiquitylation of a melanosomal protein via HECT-E3 ligases serves as sorting sign for lysosomal degradation. Mol. Biol. Cell 16, 1777–1787 (2005). Showed that not like PMEL17, MART1 is looked after inside of MVBs by a classical ubiquitin-dependent signal and, along with reference 26 , that MART1 is required for correct melanosome biogenesis.
PubMed PubMed Central Google Scholar
47Kim, B. Y., Olzmann, J. A., Barsh, G. S., Chin, L. S. & Li, L. Spongiform neurodegeneration-associated E3 ligase Mahogunin ubiquitylates TSG101 and regulates endosomal trafficking. Mol. Biol. Cell 18, 1129–1142 (2007).
PubMed PubMed Central Google Scholar
48Salas-Cortes, L. et al. Myosin Ib modulates the morphology and the protein shipping within multi-vesicular sorting endosomes. J. Cell Sci. 118, 4823–4832 (2005).
CAS PubMed Google Scholar
49Kobayashi, T. et al. The Pmel 17/silver locus protein. Characterization and investigation of its melanogenic function. J. Biol. Chem. 269, 29198–29205 (1994).
CAS PubMed Google Scholar
50Novikoff, A. B., Albala, A. & Biempica, L. Ultrastructural and cytochemical observations on B-Sixteen and Harding–Passey mouse melanomas. The foundation of premelanosomes and compound melanosomes. J. Histochem. Cytochem. 16, 299–319 (1968).
CAS PubMed Google Scholar
51Maul, G. G. & Brumbaugh, J. A. On the possible function of covered vesicles in melanogenesis of the regenerating fowl feather. J. Cell Biol. 48, 41–48 (1971).
CAS PubMed PubMed Central Google Scholar
52Sprong, H. et al. Glycosphingolipids are required for sorting melanosomal proteins in the Golgi complex. J. Cell Biol. 155, 369–380 (2001).
CAS PubMed PubMed Central Google Scholar
53Di Pietro, S. M. & Dell'Angelica, E. C. The mobile biology of Hermansky–Pudlak syndrome: recent advances. Traffic 6, 525–533 (2005).
CAS PubMed Google Scholar
54Robinson, M. S. & Bonifacino, J. S. Adaptor-related proteins. Curr. Opin. Cell Biol. 13, 444–453 (2001).
CAS PubMed Google Scholar
55Hermann, G. J. et al. Genetic research of lysosomal trafficking in Caenorhabditis elegans. Mol. Biol. Cell 16, 3273–3288 (2005).
CAS PubMed PubMed Central Google Scholar
56Bonifacino, J. S. & Traub, L. M. Signals for sorting of transmembrane proteins to endosomes and lysosomes. Annu. Rev. Biochem. 72, 395–447 (2003).
CAS PubMed PubMed Central Google Scholar
57Höning, S., Sandoval, I. V. & von Figura, Okay. A di-leucine-based motif in the cytoplasmic tail of LIMP-II and tyrosinase mediates selective binding of AP-3. EMBO J. 17, 1304–1314 (1998).
PubMed PubMed Central Google Scholar
58Calvo, P. A., Frank, D. W., Bieler, B. M., Berson, J. F. & Marks, M. S. A cytoplasmic sequence in human tyrosinase defines a 2d elegance of di-leucine-based sorting alerts for late endosomal and lysosomal delivery. J. Biol. Chem. 274, 12780–12789 (1999).
CAS PubMed Google Scholar
59Simmen, T., Schmidt, A., Hunziker, W. & Beermann, F. The tyrosinase tail mediates sorting to the lysosomal compartment in MDCK cells by the use of a di-leucine and a tyrosine-based signal. J. Cell Sci. 112, 45–53 (1999).
CAS PubMed Google Scholar
60Blagoveshchenskaya, A. D., Hewitt, E. W. & Cutler, D. F. Di-leucine alerts mediate concentrated on of tyrosinase and synaptotagmin to synaptic-like microvesicles inside PC12 cells. Mol. Biol. Cell 10, 3979–3990 (1999).
CAS PubMed PubMed Central Google Scholar
61Huizing, M. et al. AP-Three mediates tyrosinase but now not TRP-1 trafficking in human melanocytes. Mol. Biol. Cell 12, 2075–2085 (2001). This paper, together with reference15, confirmed that the AP-3 complicated (which is poor in Hermansky–Pudlak syndrome variety 2) regulates tyrosinase trafficking to melanosomes. References 15 and 62 confirmed that AP-Three functions from early endosomes.
CAS PubMed PubMed Central Google Scholar
62Peden, A. A. et al. Localization of the AP-3 adaptor complicated defines a singular endosomal exit website for lysosomal membrane proteins. J. Cell Biol. 164, 1065–1076 (2004).
CAS PubMed PubMed Central Google Scholar
63Cowles, C. R., Odorizzi, G., Payne, G. S. & Emr, S. D. The AP-3 adaptor complex is crucial for cargo-selective transport to the yeast vacuole. Cell 91, 109–118 (1997).
CAS PubMed PubMed Central Google Scholar
64Huizing, M. et al. Hermansky–Pudlak syndrome type Three in Ashkenazi Jews and different non-Puerto Rican sufferers with hypopigmentation and platelet storage-pool deficiency. Am. J. Hum. Genet. 69, 1022–1032 (2001).
CAS PubMed PubMed Central Google Scholar
65Nguyen, T. et al. Melanosome morphologies in murine fashions of Hermansky–Pudlak syndrome reflect blocks in organelle development. J. Invest. Dermatol. 119, 1156–1164 (2002). Provides a quantitative comparative research of the results of other Hermansky–Pudlak syndrome mutations on melanosome morphology in epidermal melanocytes.
CAS PubMed Google Scholar
66Meyer, C. et al. μ1A-adaptin-deficient mice: lethality, loss of AP-1 binding and rerouting of mannose 6-phosphate receptors. EMBO J. 19, 2193–2203 (2000).
CAS PubMed PubMed Central Google Scholar
67Deneka, M. et al. Rabaptin-5α/rabaptin-Four serves as a linker between rab4 and γ1-adaptin in membrane recycling from endosomes. EMBO J. 22, 2645–2657 (2003).
CAS PubMed PubMed Central Google Scholar
68Setty, S. R. G. et al. BLOC-1 is required for cargo-specific sorting from vacuolar early endosomes towards lysosome-related organelles. Mol. Biol. Cell 18, 768–780 (2007).
CAS PubMed PubMed Central Google Scholar
69Di Pietro, S. M. et al. BLOC-1 interacts with BLOC-2 and the AP-Three complex to facilitate protein trafficking on endosomes. Mol. Biol. Cell 17, 4027–4038 (2006).
CAS PubMed PubMed Central Google Scholar
70Salazar, G. et al. BLOC-1 complex deficiency alters the concentrated on of adaptor protein complex-Three cargoes. Mol. Biol. Cell 17, 4014–4026 (2006). References 68 – 70 outline roles for BLOC-1 and BLOC-2 in cargo sorting from early endosomes. References 69 and 70 counsel that BLOC-1 and AP-Three physically interact.
CAS PubMed PubMed Central Google Scholar
71Gautam, R. et al. The Hermansky–Pudlak syndrome 3 (cocoa) protein is a component of the biogenesis of lysosome-related organelles complex-2 (BLOC-2). J. Biol. Chem. 279, 12935–12942 (2004).
CAS PubMed Google Scholar
72Di Pietro, S. M., Falcon-Perez, J. M. & Dell'Angelica, E. C. Characterization of BLOC-2, a posh containing the Hermansky–Pudlak syndrome proteins HPS3, HPS5 and HPS6. Traffic 5, 276–283 (2004).
CAS PubMed Google Scholar
73Falcón-Pérez, J. M., Romero- Calderón, R., Brooks, E. S., Krantz, D. E. & Dell'Angelica, E. C. The Drosophila pigmentation gene red (p) encodes a homologue of human Hermansky–Pudlak syndrome 5 (HPS5). Traffic 8, 154–168 (2007).
PubMed Google Scholar
74Richmond, B. et al. Melanocytes derived from sufferers with Hermansky–Pudlak syndrome types 1, 2, and 3 have distinct defects in shipment trafficking. J. Invest. Dermatol. 124, 420–427 (2005).
CAS PubMed PubMed Central Google Scholar
75Boissy, R. E. et al. Melanocyte-specific proteins are aberrantly trafficked in melanocytes of Hermansky–Pudlak syndrome-type 3. Am. J. Pathol. 166, 231–240 (2005).
CAS PubMed PubMed Central Google Scholar
76Helip-Wooley, A. et al. Improper trafficking of melanocyte-specific proteins in Hermansky–Pudlak syndrome type-5. J. Invest. Dermatol. 127, 1471–1478 (2007).
CAS PubMed Google Scholar
77Gautam, R. et al. Interaction of Hermansky–Pudlak syndrome genes in the law of lysosome-related organelles. Traffic 7, 779–792 (2006).
CAS PubMed Google Scholar
78Wade, N. et al. Syntaxin 7 complexes with mouse Vps10p tail interactor 1b, Syntaxin 6, vesicle-associated membrane protein (VAMP)8, and VAMP7 in B16 melanoma cells. J. Biol. Chem. 276, 19820–19827 (2001).
CAS PubMed Google Scholar
79Huang, L., Kuo, Y. M. & Gitschier, J. The pallid gene encodes a unique, syntaxin 13-interacting protein serious about platelet storage pool deficiency. Nature Genet. 23, 329–332 (1999).
CAS PubMed Google Scholar
80Moriyama, Okay. & Bonifacino, J. S. Pallidin is an element of a multi-protein complex interested by the biogenesis of lysosome-related organelles. Traffic 3, 666–677 (2002). References 79 and 80 show that an endosomal SNARE protein, syntaxin-13, interacts with the Hermansky–Pudlak syndrome complicated BLOC-1, and were the first papers to provide proof for a task of these complexes in endosomal delivery. Reference78 additional implies a functional function for syntaxin-13 and other endosomal SNAREs in regulating melanosome biogenesis.
CAS PubMed Google Scholar
81Yu, J.-F., Fukamachi, S., Mitani, H., Hori, H. & Kanamori, A. Reduced expression of vps11 causes less pigmentation in medaka, Oryzias latipes. Pigment Cell Res. 19, 628–634 (2006).
CAS PubMed Google Scholar
82Maldonado, E., Hernandez, F., Lozano, C., Castro, M. E. & Navarro, R. E. The zebrafish mutant vps18 as a type for vesicle-traffic related hypopigmentation illnesses. Pigment Cell Res. 19, 315–326 (2006).
CAS PubMed Google Scholar
83Pulipparacharuvil, S. et al. Drosophila Vps16A is required for trafficking to lysosomes and biogenesis of pigment granules. J. Cell Sci. 118, 3663–3673 (2005).
CAS PubMed Google Scholar
84Warner, T. S. et al. The gentle gene of Drosophila melanogaster encodes a homologue of VPS41, a yeast gene serious about cellular-protein trafficking. Genome 41, 236–243 (1998).
CAS PubMed Google Scholar
85Sevrioukov, E. A., He, J. P., Moghrabi, N., Sunio, A. & Kramer, H. A job for the deep orange and carnation eye colour genes in lysosomal delivery in Drosophila. Mol. Cell 4, 479–486 (1999).
CAS PubMed Google Scholar
86Gerst, J. E. SNARE regulators: matchmakers and matchbreakers. Biochim. Biophys. Acta 1641, 99–110 (2003).
CAS PubMed Google Scholar
87Richardson, S. C., Winistorfer, S. C., Poupon, V., Luzio, J. P. & Piper, R. C. Mammalian late vacuole protein sorting orthologues participate in early endosomal fusion and engage with the cytoskeleton. Mol. Biol. Cell 15, 1197–1210 (2004).
CAS PubMed PubMed Central Google Scholar
88Shen, J., Tareste, D. C., Paumet, F., Rothman, J. E. & Melia, T. J. Selective activation of cognate SNAREpins by way of Sec1/Munc18 proteins. Cell 128, 183–195 (2007).
CAS PubMed Google Scholar
89Smith, J. W., Koshoffer, A., Morris, R. E. & Boissy, R. E. Membranous complexes function of melanocytes derived from sufferers with Hermansky–Pudlak syndrome kind 1 are macroautophagosomal entities of the lysosomal compartment. Pigment Cell Res. 18, 417–426 (2005).
CAS PubMed PubMed Central Google Scholar
90Falcón-Pérez, J. M., Nazarian, R., Sabatti, C. & Dell'Angelica, E. C. Distribution and dynamics of Lamp1-containing endocytic organelles in fibroblasts deficient in BLOC-3. J. Cell Sci. 118, 5243–5255 (2005).
PubMed Google Scholar
91Oh, J., Liu, Z. X., Feng, G. H., Raposo, G. & Spritz, R. A. The Hermansky–Pudlak syndrome (HPS) protein is part of a prime molecular weight complicated involved in biogenesis of early melanosomes. Hum. Mol. Genet. 9, 375–385 (2000).
CAS PubMed Google Scholar
92Wasmeier, C. et al. Rab38 and Rab32 keep an eye on early post-Golgi trafficking of melanogenic enzymes. J. Cell Biol. 175, 271–281 (2006). This paper displays that RAB32 and RAB38 function in a redundant approach to control trafficking of tyrosinase and TYRP1 and thereby melanosome formation.
CAS PubMed PubMed Central Google Scholar
93Oiso, N., Riddle, S. R., Serikawa, T., Kuramoto, T. & Spritz, R. A. The rat Ruby (R) locus is Rab38: identical mutations in Fawn-hooded and Tester-Moriyama rats derived from an ancestral Long Evans rat sub-strain. Mamm. Genome 15, 307–314 (2004).
CAS PubMed Google Scholar
94Loftus, S. K. et al. Mutation of melanosome protein RAB38 in chocolate mice. Proc. Natl Acad. Sci. USA 99, 4471–4476 (2002). Showed that RAB38 purposes in melanosome biogenesis.
CAS PubMed Google Scholar
95Ma, J., Plesken, H., Treisman, J. E., Edelman-Novemsky, I. & Ren, M. Lightoid and Claret: a rab GTPase and its putative guanine nucleotide alternate consider biogenesis of Drosophila eye pigment granules. Proc. Natl Acad. Sci. USA 101, 11652–11657 (2004).
CAS PubMed Google Scholar
96Hirosaki, Okay., Yamashita, T., Wada, I., Jin, H. Y. & Jimbow, K. Tyrosinase and tyrosinase-related protein 1 require Rab7 for their intracellular shipping. J. Invest. Dermatol. 119, 475–480 (2002).
CAS PubMed Google Scholar
97Jordens, I. et al. Rab7 and Rab27a keep watch over two motor protein actions concerned with melanosomal transport. Pigment Cell Res. 19, 412–423 (2006).
CAS PubMed Google Scholar
98Rink, J., Ghigo, E., Kalaidzidis, Y. & Zerial, M. Rab conversion as a mechanism of progression from early to late endosomes. Cell 122, 735–749 (2005).
CAS PubMed PubMed Central Google Scholar
99Brilliant, M. H. The mouse p (pink-eyed dilution) and human P genes, oculocutaneous albinism sort 2 (OCA2), and melanosomal pH. Pigment Cell Res. 14, 86–93 (2001).
CAS PubMed Google Scholar
100Newton, J. M. et al. Mutations in the human orthologue of the mouse underwhite gene (uw) underlie a brand new shape of oculocutaneous albinism, OCA4. Am. J. Hum. Genet. 69, 981–988 (2001).
CAS PubMed PubMed Central Google Scholar
101Manga, P., Boissy, R. E., Pifko-Hirst, S., Zhou, B. K. & Orlow, S. J. Mislocalization of melanosomal proteins in melanocytes from mice with oculocutaneous albinism form 2. Exp. Eye Res. 72, 695–710 (2001).
CAS PubMed Google Scholar
102Staleva, L., Manga, P. & Orlow, S. J. Pink-eyed dilution protein modulates arsenic sensitivity and intracellular glutathione metabolism. Mol. Biol. Cell 13, 4206–4220 (2002).
CAS PubMed PubMed Central Google Scholar
103Manga, P. & Orlow, S. J. Inverse correlation between pink-eyed dilution protein expression and induction of melanogenesis by means of bafilomycin A1 . Pigment Cell Res. 14, 362–367 (2001).
CAS PubMed Google Scholar
104Chen, K., Manga, P. & Orlow, S. J. Pink-eyed dilution protein controls the processing of tyrosinase. Mol. Biol. Cell 13, 1953–1964 (2002).
CAS PubMed PubMed Central Google Scholar
105Costin, G.-E., Valencia, J. C., Vieira, W. D., Lamoreux, M. L. & Hearing, V. J. Tyrosinase processing and intracellular trafficking is disrupted in mouse number one melanocytes carrying the underwhite (uw) mutation. A model for oculocutaneous albinism (OCA) sort 4. J. Cell Sci. 116, 3203–3212 (2003).
CAS PubMed Google Scholar
106Lamason, R. L. et al. SLC24A5, a putative cation exchanger, affects pigmentation in zebrafish and people. Science 310, 1782–1786 (2005). Identified a putative cation exchanger as answerable for the golden mutation in zebrafish, after which confirmed that allelic variation in the human orthologue correlates with variation in skin color.
CAS PubMed Google Scholar
107Smith, D. R., Spaulding, D. T., Glenn, H. M. & Fuller, B. B. The relationship between Na+/H+ exchanger expression and tyrosinase job in human melanocytes. Exp. Cell Res. 298, 521–534 (2004).
CAS PubMed Google Scholar
108Schiaffino, M. V. & Tacchetti, C. The ocular albinism sort 1 (OA1) protein and the evidence for an intracellular sign transduction machine concerned about melanosome biogenesis. Pigment Cell Res. 18, 227–233 (2005).
CAS PubMed Google Scholar
109Innamorati, G., Piccirillo, R., Bagnato, P., Palmisano, I. & Schiaffino, M. V. The melanosomal/lysosomal protein OA1 has homes of a G protein-coupled receptor. Pigment Cell Res. 19, 125–135 (2006). Using a mobile transfection gadget, this paper confirmed that OA1 stimulates Giα signalling, which suggests that it purposes as a classical G-protein coupled receptor.
CAS PubMed PubMed Central Google Scholar
110Parks, A. L. & Curtis, D. Presenilin diversifies its portfolio. Trends Genet. 23, 140–150 (2007).
CAS PubMed Google Scholar
111Wang, R., Tang, P., Wang, P., Boissy, R. E. & Zheng, H. Regulation of tyrosinase trafficking and processing by way of presenilins: partial loss of function through familial Alzheimer's disease mutation. Proc. Natl Acad. Sci. USA 103, 353–358 (2006). By analysing melanocytes from focused gene knockouts in mice, this paper makes the provocative recommendation that presenilins, which can be part of an integral membrane protease advanced, regulate the trafficking of tyrosinase and different proteins to mature melanosomes.
CAS PubMed Google Scholar
112Kleijmeer, M. et al. Reorganization of multivesicular our bodies regulates MHC magnificence II antigen presentation by dendritic cells. J. Cell Biol. 155, 53–64 (2001).
CAS PubMed PubMed Central Google Scholar
113Heijnen, H. F. et al. Multivesicular our bodies are an intermediate degree in the formation of platelet α-granules. Blood 91, 2313–2325 (1998).
CAS PubMed Google Scholar
114Huizing, M., Parkes, J. M., Helip-Wooley, A., White, J. G. & Gahl, W. A. Platelet α granules in BLOC-2 and BLOC-3 subtypes of Hermansky–Pudlak syndrome. Platelets 18, 150–157 (2007).
CAS PubMed Google Scholar
115Rajendran, L. et al. Alzheimer's disease β-amyloid peptides are released in affiliation with exosomes. Proc. Natl Acad. Sci. USA 103, 11172–11177 (2006).
CAS PubMed Google Scholar
116Février, B. et al. Cells release prions in affiliation with exosomes. Proc. Natl Acad. Sci. USA 101, 9683–9688 (2004).
PubMed Google Scholar
117Ehehalt, R., Keller, P., Haass, C., Thiele, C. & Simons, K. Amyloidogenic processing of the Alzheimer β-amyloid precursor protein depends on lipid rafts. J. Cell Biol. 160, 113–123 (2003).
CAS PubMed PubMed Central Google Scholar
118Maxfield, F. R. & Menon, A. Ok. Intracellular sterol delivery and distribution. Curr. Opin. Cell Biol. 18, 379–385 (2006).
CAS PubMed Google Scholar
119Geuze, H. J., Slot, J. W., Strous, G. J., Lodish, H. F. & Schwartz, A. L. Intracellular website online of asialoglycoprotein receptor-ligand uncoupling: double-label immunoelectron microscopy all the way through receptor-mediated endocytosis. Cell 32, 277–287 (1983).
CAS PubMed Google Scholar
120Hopkins, C. R. & Trowbridge, I. S. Internalization and processing of transferrin and the transferrin receptor in human carcinoma A431 cells. J. Cell Biol. 97, 508–521 (1983).
CAS PubMed Google Scholar
121Sachse, M., Urbe, S., Oorschot, V., Strous, G. J. & Klumperman, J. Bilayered clathrin coats on endosomal vacuoles are serious about protein sorting towards lysosomes. Mol. Biol. Cell 13, 1313–1328 (2002).
CAS PubMed PubMed Central Google Scholar
122Raiborg, C., Rusten, T. E. & Stenmark, H. Protein sorting into multivesicular endosomes. Curr. Opin. Cell Biol. 15, 446–455 (2003).
CAS PubMed Google Scholar
123Stoorvogel, W., Strous, G. J., Geuze, H. J., Oorschot, V. & Schwartz, A. L. Late endosomes derive from early endosomes by way of maturation. Cell 65, 417–427 (1991).
CAS PubMed Google Scholar
124Hopkins, C. R., Gibson, A., Shipman, M. & Miller, Okay. Movement of internalized ligand-receptor complexes alongside a continuing endosomal reticulum. Nature 346, 335–339 (1990).
CAS PubMed Google Scholar
125Février, B. & Raposo, G. Exosomes: endosomal-derived vesicles shipping extracellular messages. Curr. Opin. Cell Biol. 16, 415–421 (2004).
PubMed Google Scholar
126Leung, K. F., Baron, R. & Seabra, M. C. Thematic overview sequence: lipid posttranslational adjustments. geranylgeranylation of Rab GTPases. J. Lipid Res. 47, 467–475 (2006).
CAS PubMed Google Scholar
127Zhang, Q. et al. Cell-specific atypical prenylation of Rab proteins in platelets and melanocytes of the gunmetal mouse. Br. J. Haematol. 117, 414–423 (2002).
CAS PubMed Google Scholar
128Detter, J. C. et al. Rab geranylgeranyl transferase a mutation in the gunmetal mouse reduces Rab prenylation and platelet synthesis. Proc. Natl Acad. Sci. USA 97, 4144–4149 (2000).
CAS PubMed Google Scholar
129Sato, T. K., Rehling, P., Peterson, M. R. & Emr, S. D. Class C vps protein complex regulates vacuolar SNARE pairing and is required for vesicle docking/fusion. Mol. Cell 6, 661–671 (2000).
CAS PubMed Google Scholar
130Zhang, H., Seabra, M. C. & Deisenhofer, J. Crystal structure of Rab geranylgeranyltransferase at 2.Zero Å solution. Structure 8, 241–251 (2000).
CAS PubMed Google Scholar
0 comments:
Post a Comment